機(jī)器視覺檢測(cè)技術(shù)通常根據(jù)其應(yīng)用、原理或方法進(jìn)行分類,以下是常見的分類:
1、按照?qǐng)D像技術(shù)分類
2D 機(jī)器視覺:利用單個(gè)工業(yè)相機(jī)拍攝產(chǎn)品的二維圖像進(jìn)行檢測(cè)分析,適用于大多數(shù)傳統(tǒng)的檢測(cè)任務(wù),主要用于平面物體的尺寸測(cè)量、缺陷檢測(cè)、外觀檢測(cè)和字符識(shí)別。
3D 機(jī)器視覺: 通過激光三角測(cè)量、結(jié)構(gòu)光投影、雙目視覺等技術(shù)獲取物體的三維信息(深度、高度、形狀)。常用于更復(fù)雜的尺寸測(cè)量、體積計(jì)算和物體的三維重建。
光譜成像(高光譜/多光譜): 利用特定波長的光來檢測(cè)人眼無法識(shí)別的物質(zhì)特性,例如成分分析、農(nóng)產(chǎn)品成熟度檢測(cè)等。
熱成像(紅外線成像): 利用紅外相機(jī)檢測(cè)物體的熱量分布,常用于電路板缺陷檢測(cè)、發(fā)熱部件監(jiān)控等。
2、 按功能分類
外觀檢測(cè):檢測(cè)物體的外觀質(zhì)量,如表面裂紋、污漬、變形等。
尺寸測(cè)量:用于精確測(cè)量物體的尺寸、位置、形狀等,常見于工業(yè)生產(chǎn)線。
缺陷檢測(cè):包括裂紋、孔洞、變形等各種缺陷的自動(dòng)識(shí)別。
分類識(shí)別:利用深度學(xué)習(xí)等技術(shù)對(duì)物體進(jìn)行分類和識(shí)別,常見于人臉識(shí)別、物體識(shí)別等應(yīng)用。
3、按技術(shù)方法分類
傳統(tǒng)圖像處理:基于邊緣檢測(cè)、模板匹配、顏色分析等傳統(tǒng)方法進(jìn)行圖像分析和處理。
基于人工智能的檢測(cè):使用深度學(xué)習(xí)、卷積神經(jīng)網(wǎng)絡(luò)(CNN)等算法進(jìn)行更復(fù)雜的模式識(shí)別和分類,特別適用于復(fù)雜的圖像識(shí)別任務(wù)。

